
## A NEW SYNTHESIS OF $\delta$ -LACTONES FROM OXETANES

Masahiko Yamaguchi, Keisuke Shibato, and Ichiro Hirao Department of Industrial Chemistry, Kyushu Institute of Technology, Sensui-cho, Tobata, Kitakyushu 804, JAPAN

Abstract: Oxetanes were reacted with lithium enolates generated from esters or amides in the presence of boron trifluoride etherate to give  $\delta$ -hydroxyesters or amides in high yield, which were hydrolyzed and converted to  $\delta$ -lactones.

Lactones are one of the most familiar class of compounds in organic chemistry and many methods were reported for the synthesis of the compounds<sup>1)</sup>. As for five-membered  $\delta$ -lactones, one of the general synthetic method would be the ring cleavage of oxiranes with various carboxylic acid derivatives to form  $\delta$ -hydroxy acids followed by the lactone formation<sup>2)</sup>. Though the ring opening reaction of oxetanes (<u>1</u>), a higher homologue of oxiranes, was expected to be a method for the synthesis of  $\delta$ -lactones (<u>4</u>), few report, to our knowledge, appeared concerning this approach<sup>3)</sup>. One of the reasons for the difficulties to carry out this synthesis was a rather low reactivity of <u>1</u> against nucleophiles compared with oxiranes. Previously, we have found that boron trifluoride etherate promotes the ring opening of <u>1</u> with lithium acetylides and that  $\delta$ -hydroxyacetylenes were obtained in high yield<sup>4)</sup>. As a further extention of this new methodology, we now wish to describe a new synthesis of  $\delta$ -lactones (<u>4</u>) utilizing the ring opening of oxetanes (<u>1</u>) with lithium enolates (<u>2</u>) by effecting a Lewis acid<sup>5)</sup>.

Thus, lithium enolates generated from esters or an amide were treated with several oxetanes  $(\underline{1})$  in the presence of boron trifluoride etherate in tetrahydrofuran (THF) at -95°C to -40°C, and the corresponding  $\delta$ -hydroxycarboxylic acid derivatives (3) were obtained in high yield (Scheme I, Table I).



| entry | esters/amides                                                          | oxetanes                           | products <sup>a)</sup>                                | yield (%)             |
|-------|------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------|-----------------------|
| 1     | CH <sub>3</sub> CO <sub>2</sub> t-Bu                                   | C,                                 | CO <sub>2</sub> t-Bu                                  | 90 <sup>b)</sup>      |
| 2     | 2.4 <sup>5</sup> 1.                                                    | n-C <sub>7</sub> H <sub>15</sub> 0 | n-C <sub>7</sub> H <sub>15</sub> CO <sub>2</sub> t-Bu | 87 (57) <sup>e)</sup> |
| 3     |                                                                        | Ph                                 | Ph CO <sub>2</sub> t-Bu<br>H                          | 84                    |
| 4     |                                                                        | Ph <sup>c)</sup>                   | Ph CO <sub>2</sub> t-Bu                               | ) 77                  |
| 5     |                                                                        | <del>f</del> •                     | GC02t-Bu                                              | 35                    |
| 6     | <sup>c</sup> 2 <sup>H</sup> 5 <sup>co2<sup>c</sup>2<sup>H</sup>5</sup> | n-C <sub>7</sub> H <sub>15</sub> 0 | n-C <sub>7</sub> H <sub>15</sub> H <sup>c)</sup>      | 84                    |
| 7     |                                                                        |                                    | Ph<br>CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>   | 73                    |
| 8     | CH <sub>3</sub> CONMe <sub>2</sub>                                     | n-C <sub>7</sub> H <sub>15</sub> 0 | n-C <sub>7</sub> H <sub>15</sub> OCONMe <sub>2</sub>  | 77                    |
| 9     |                                                                        | Ph 1                               | Ph CONMe <sub>2</sub>                                 | 60                    |
| 10    |                                                                        | Ph- c)                             | Ph CONMe <sub>2</sub>                                 | 72                    |

Table I. A synthesis of  $\delta$ -hydroxyesters and amides.

- a) All the products gave satisfactory spectral data (<sup>1</sup>H-NMR, IR, and/or <sup>13</sup>C-NMR).
- b) The reaction was carried out with 3 mmol of oxetane and 15 mmol of ester, and the product was isolated by short path distillation.

c) A 1:1 mixture of diastereomers determined by  $^{13}$ C-NMR.

- d) A satisfactory elemental analysis was obtained by high resolution mass spectrometry.
- e) The reaction was performed at  $-78^{\circ}C$ .

The examination of the reaction conditions showed some aspects of the present synthesis. The Lewis acid was playing an important role in the activation of oxetanes  $(\underline{1})$ , as  $\underline{3}$  was not detected in the absence of boron trifluoride etherate even at r.t. It was also observed that  $\underline{3}$  were obtained in higher yield when the reaction was carried out at  $-95^{\circ}$ C rather than at  $-78^{\circ}$ C (entry 2).

On the synthetic stand point of view, the following feature should be noted: 1) Several types of substituted oxetanes were available in the present synthesis. And, when unsymmetrically substituted oxetanes were used, C-O bond fission at the less hindered site occurred (entries 2,4,5,6,8, and 10). 2) In case of 1,2disubstituted oxetanes, cis- or trans-oxetanes seemed to be equally reactive to the nucleophile (entries 4 and 10). 3) In the reaction of the enolate generated from ethyl propionate, 1,3- or 1,4-asymmetric induction was not observed under the present reaction conditions (entries 6 and 7).

Next, we turned to the lactonization of the  $\delta$ -hydroxyesters (<u>3</u>) as depicted in Scheme I and Table II. t-Butyl esters were treated with trifluoroacetic acid in methylene chloride for 1 h, and were directly converted to the corresponding  $\delta$ -lactones (entries 1,2,3, and 4) in high yield. In case of ethyl esters, hydrolysis of ester moiety was performed with 3N potassium hydroxide at refluxing temperature for 1 h, followed by the cyclization with acetic anhydride in pyridine at r.t. (entries 5 and 6). In either method, the stereochemistry of <u>3</u> was preserved throughout the lactone formation step (entries 3,5, and 6). Thus,  $\delta$ -lactones (<u>4</u>) with various substituents were synthesized from oxetanes (<u>1</u>) by two-carbon homologation.

A typical procedure is described for the synthesis of 5-undecanolide: Under nitrogen atomosphere, a tetrahydrofuran (THF, 2 ml) solution of t-butyl acetate (290 mg, 2.5 mmol) was added to a THF-hexane (2 ml and 1.5 ml) solution of lithium diisopropyl amide (LDA, 2.5 mmol) at  $-78^{\circ}$ C. After stirring for 25 min, 2-heptyloxetane (88 mg, 0.5 mmol) in THF (2 ml) and boron trifluoride etherate (0.3 ml, 2.4 mmol) were added at  $-95^{\circ}$ C. Bath temperature was slowly raised to  $-40^{\circ}$ C for 1.5 h and the reaction was quenched by adding aqueous ammonium chloride. A usual work up gave t-butyl 5-hydroxyundecanoate (134 mg, 87%). NMR (CDCl<sub>3</sub>) **§** 0.6-1.0 (3H, m), 1.0-1.9 (16H, m), 1.44 (9H, s), 2.24 (2H, t, J=7Hz), 2.79 (1H, s), 3.3-3.8 (1H, m). IR (neat) 3400, 1720 cm<sup>-1</sup>.

Under nitrogen atomosphere, trifluoroacetic acid (0.2 ml) was added to a methylene chloride (2 ml) solution of t-butyl 5-hydroxyundecanoate (199 mg, 0.73 mmol) and the mixture was stirred for 1 h. A usual work up gave 5-undecanolide (153 mg, quant).

NMR (CDCl<sub>3</sub>)  $\delta$  0.6-1.0 (3H, m), 1.0-2.1 (16H, m), 2.2-2.6 (2H, m), 4.0-4.4 (1H, m). IR (neat) 1730 cm<sup>-1</sup>. MS m/e 198 (M<sup>+</sup>), 167. Found: 198.1612. Calcd for C<sub>12</sub>H<sub>22</sub>O<sub>2</sub>: 198.1619.

| entry | $\pmb{\delta}$ -hydroxyesters                              | $\delta$ -lactones <sup>b)</sup>     | yield (%) |
|-------|------------------------------------------------------------|--------------------------------------|-----------|
| 1     | n-C <sub>7</sub> H <sub>15</sub> OCO <sub>2</sub> t-Bu     | n-C <sub>7</sub> H <sub>15</sub> 0 0 | quant.    |
| 2     | Ph<br>OCO2t-Bu                                             | Ph                                   | 90        |
| 3     | Ph CO <sub>2</sub> t-Bu                                    | $Ph \rightarrow 0 \qquad 0 \qquad 0$ | 72        |
| 4     | GCO2t-Bu                                                   | 50-0                                 | 63        |
| 5     | $n-C_7H_{15}$ $H_{15}$ $H_{15}$ $H_{15}$ $H_{15}$ $H_{15}$ | $n-C_7H_{15}$                        | 90        |
| 6     | Ph                                                         | Ph ( )                               | 73        |

Table II. A synthesis of  $\delta$ -lactones.<sup>a)</sup>

- a) Entry 1,2,3,4: CF<sub>3</sub>CO<sub>2</sub>H, CH<sub>2</sub>Cl<sub>2</sub>, r. t., 1 h.
  Entry 5,6: i) 3N-KOH, THF, refl., 1h, ii) Ac<sub>2</sub>O-pyridine, r. t., 2 h.
- b) All the products gave satisfactory spectral data (<sup>1</sup>H-NMR, IR, and/or <sup>13</sup>C-NMR). c) A 1:1 mixture of diastereoisomers determined by <sup>13</sup>C-NMR.
- d) A satisfactory elemental analysis was obtained by high resolution mass spectrometry.

## References

1) For recent examples for the synthesis of  $\delta$ -lactones by C-C bond formation: R. W. Dugger and C. H. Heathcock, J. Org. Chem., 45, 1181 (1980); M. Chmielewski and J. Jurczak, ibid, 46, 2230 (1981); G. Solladié and F. Matloubi-Moghadam, ibid, 47, 91 (1982); R. H. Schlessinger and M. A. Poss, J. Am. Chem. Soc., 104, 357 (1982). 2) For recent examples: J. W. Scheeren, F. J. M. Dahmen, and C. G. Bakker, Tetrahedron Lett., 1979, 2925; A. I. Meyers, Y. Yamamoto, E. D. Mihelich, and R. A. Bell, J. Org. Chem., 45, 2792 (1980); L. Strekowski, M. Visnick, and M. A. Battiste, Synthesis, 1983, 493. 3) The reaction of metalated enamine or nitrile with a oxetane is known: P. F. Hudrlik and C.-N. Wan, J. Org. Chem., 40, 2963 (1975); L. L. Darko and J. G. Cannon, ibid, 32, 2352 (1967). 4) M. Yamaguchi, Y. Nobayashi, and I. Hirao, Tetrahedron Lett., 24, 5121 (1983). 5) A reaction of lithium enolate in the presence of boron trifluoride etherate is known: M. Suzuki, A. Yanagisawa, and R. Noyori, Tetrahedron Lett., 23, 3595 (1982).

(Received in Japan 13 December 1983)